metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tricarbonyl-1,10-phenanthroline-(triphenylphosphine)molybdenum(0)

Kathleen J. Muir, Geoffrey P. McQuillan and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Received 29 August 2007; accepted 3 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.068; data-to-parameter ratio = 21.9.

In the title compound, $[Mo(CO)_3(C_{18}H_{15}P)(C_{12}H_8N_2)]$ or $C_{33}H_{23}MoN_2O_3P$, the carbonyl groups are attached to one face of the MoC₃N₂P octahedron. Slight differences in the Mo–C bond lengths may be interpreted in terms of back-bonding models of electronic structure. In the crystal structure, a short C–H···O interaction (H···O = 2.34 Å) may help to establish the packing.

Related literature

For a related structure, see: Muir *et al.* (2007). For background, see: Cotton & Wilkinson (1966); Howie & McQuillan (1986). For reference structural data, see: Allen *et al.* (1987).

Experimental

Crystal data	
$[Mo(CO)_3(C_{18}H_{15}P)(C_{12}H_8N_2)]$	b = 9.6376 (4) Å
$M_r = 622.44$	c = 18.4119 (7) Å
Triclinic, P1	$\alpha = 77.780 \ (1)^{\circ}$
a = 8.5179 (4) Å	$\beta = 87.979 \ (1)^{\circ}$

 $\gamma = 70.723 (1)^{\circ}$ $V = 1393.42 (10) \text{ Å}^3$ Z = 2Mo K α radiation

Data collection

Bruker SMART 1000 CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\rm min} = 0.835, T_{\rm max} = 0.946$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 361 parameters $wR(F^2) = 0.068$ H-atom parameters constrainedS = 0.95 $\Delta \rho_{max} = 0.63$ e Å $^{-3}$ 7912 reflections $\Delta \rho_{min} = -0.30$ e Å $^{-3}$

 $\mu = 0.57 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.015$

 $0.35 \times 0.26 \times 0.11 \text{ mm}$

12111 measured reflections

7912 independent reflections 6552 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Mo1-C2	1.933 (2)	Mo1-N2	2.2304 (14)
Mo1-C3	1.9360 (18)	Mo1-N1	2.2589 (14)
Mo1-C1	1.9604 (18)	Mo1-P1	2.5965 (5)

Table 2

Hydrogen-bond	geometry	(A, °).
---------------	----------	-------	----

$C5-H5\cdots O2^{i}$ 0.93 2.34 3.058 (3) 134	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
	$C5-H5\cdots O2^i$	0.93	2.34	3.058 (3)	134

Symmetry code: (i) x - 1, y + 1, z.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2494).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A. & Wilkinson, G. (1966). Advanced Inorganic Chemistry, 2nd ed., pp. 731–732. New York: John Wiley.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Howie, R. A. & McQuillan, G. P. (1986). J. Chem. Soc. Dalton Trans. pp. 759–764.
- Muir, K. J., McQuillan, G. P. & Harrison, W. T. A. (2007). Acta Cryst. E63, m2493.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2492 [doi:10.1107/S1600536807043176]

Tricarbonyl-1,10-phenanthroline(triphenylphosphine)molybdenum(0)

K. J. Muir, G. P. McQuillan and W. T. A. Harrison

Comment

The title compound, (I), $Mo(CO)_3(C_{18}H_{15}P)(C_{12}H_8N_2)$, is an example of a trisubstituted group-6 metal hexacarbonyl (Howie & McQuillan, 1986). The related tricarbonyl-triphenylphosphine-2,2-bipyridyl-molybdenum(0) is described in the next paper (Muir *et al.*, 2007).

The three remaining carbonyl groups atached to the Mo atom in (I) form one face of the distorted MoC_3N_2P octahedron. Otherwise, all the bond lengths and angles in (I) (Fig. 1) may be regarded as normal (Allen *et al.*, 1987). The diehdral angles for the phenyl rings for the triphenylphosphine molecule are C16—C21/C22—C27 = 83.94 (11)°, C16—C21/C28—C33 = 71.77 (12)°, and C22—C27/C28—C33 = 67.95 (12)°. The N—Mo—N bite angle for the 1,10-phenanthroline (phen) molecule is 73.48 (5)°.

There is a slight distinction between the shorter Mo1—C2 and Mo1—C3 bond lengths *trans* to N atoms and and the longer Mo1—C1 bond, which is *trans* to the P atom. The traditional explanation (Cotton & Wilkinson, 1966) for this phenomenon is that triphenylphosphine is a π -acceptor ligand and completes for metal d electrons with the carbonyl group *trans* to itself, hence the Mo—C bond has less double-bond character than a Mo—C bond *trans* to an atom with no π -acceptor properties such as N, and is therefore longer. The C1—Mo1—P1 bond angle is also closer to linear than the C—Mo—N angles.

In the crystal of (I), a rather short C—H \cdots O interaction arising from a phen C—H grouping (Table 2) may help to establish the packing.

Experimental

Equimolar quantities of $Mo(CO)_6$, triphenylphosphine and 1,10-phenanthroline were refluxed in toluene under an N₂ atmosphere for seven hours. After cooling, air-stable black slabs and blocks of (I) were recovered by vacuum filtration and rinsing with light petroleum ether in 79% yield based on $Mo(CO)_6$. The crystals of (I) smear to a deep orange colour on a glass slide.

Refinement

The hydrogen atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (H atoms omitted for clarity).

Tricarbonyl-1,10-phenanthroline(triphenylphosphine)molybdenum(0)

Crystal data	
[Mo(CO) ₃ (C ₁₈ H ₁₅ P)(C ₁₂ H ₈ N ₂)]	Z = 2
$M_r = 622.44$	$F_{000} = 632$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.484 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.5179 (4) Å	Cell parameters from 6139 reflections
b = 9.6376 (4) Å	$\theta = 2.3 - 30.0^{\circ}$
c = 18.4119 (7) Å	$\mu = 0.57 \text{ mm}^{-1}$
$\alpha = 77.780 \ (1)^{\circ}$	T = 293 (2) K
$\beta = 87.979 \ (1)^{\circ}$	Slab, black
$\gamma = 70.723 \ (1)^{\circ}$	$0.35\times0.26\times0.11~mm$
$V = 1393.42 (10) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD diffractometer	7912 independent reflections
Radiation source: fine-focus sealed tube	6552 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.015$
T = 293(2) K	$\theta_{\text{max}} = 30.0^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -11 \rightarrow 11$
$T_{\min} = 0.835, T_{\max} = 0.946$	$k = -10 \rightarrow 13$
12111 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.068$	$w = 1/[\sigma^2(F_0^2) + (0.036P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{\rm max} = 0.001$
7912 reflections	$\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$
361 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mo1	0.182959 (18)	-0.028421 (15)	0.334120 (8)	0.02732 (5)
C1	0.1241 (2)	-0.11580 (19)	0.43305 (10)	0.0338 (4)
C2	0.3428 (3)	-0.2261 (2)	0.33681 (12)	0.0483 (5)
C3	0.0106 (3)	-0.0987 (2)	0.30575 (10)	0.0417 (4)
01	0.0855 (2)	-0.17694 (17)	0.48803 (8)	0.0563 (4)
O2	0.4411 (2)	-0.34549 (18)	0.34323 (14)	0.0988 (7)
O3	-0.0968 (2)	-0.1451 (2)	0.29626 (10)	0.0769 (6)
P1	0.25368 (6)	0.07815 (5)	0.20004 (2)	0.03263 (10)
C4	-0.1324 (2)	0.2719 (2)	0.32076 (11)	0.0409 (4)
H4	-0.1858	0.2202	0.2989	0.049*
C5	-0.2236 (3)	0.4158 (2)	0.33039 (13)	0.0560 (6)
Н5	-0.3350	0.4586	0.3146	0.067*
C6	-0.1495 (3)	0.4932 (2)	0.36277 (13)	0.0565 (6)
Н6	-0.2102	0.5888	0.3699	0.068*
C7	0.0191 (3)	0.4286 (2)	0.38543 (11)	0.0465 (5)
C8	0.1042 (2)	0.28319 (18)	0.37319 (9)	0.0341 (4)
C9	0.2773 (2)	0.2132 (2)	0.39245 (9)	0.0356 (4)
C10	0.3628 (3)	0.2892 (2)	0.42524 (11)	0.0483 (5)
C11	0.5331 (3)	0.2177 (3)	0.44151 (12)	0.0617 (7)
H11	0.5935	0.2640	0.4632	0.074*
C12	0.6104 (3)	0.0801 (3)	0.42563 (12)	0.0586 (6)
H12	0.7240	0.0324	0.4358	0.070*
C13	0.5168 (2)	0.0108 (2)	0.39374 (11)	0.0458 (5)
H13	0.5709	-0.0837	0.3836	0.055*
C14	0.1082 (4)	0.5014 (3)	0.41967 (13)	0.0616 (6)
H14	0.0528	0.5967	0.4285	0.074*

C15	0.2699 (4)	0.4352 (3)	0.43927 (13)	0.0639 (7)
H15	0.3237	0.4847	0.4625	0.077*
C16	0.4248 (2)	-0.0531 (2)	0.15991 (10)	0.0363 (4)
C17	0.5718 (2)	-0.1331 (2)	0.20295 (11)	0.0457 (5)
H17	0.5813	-0.1162	0.2503	0.055*
C18	0.7025 (3)	-0.2362 (3)	0.17655 (12)	0.0535 (5)
H18	0.8000	-0.2863	0.2055	0.064*
C19	0.6887 (3)	-0.2653 (3)	0.10715 (13)	0.0569 (6)
H19	0.7755	-0.3369	0.0898	0.068*
C20	0.5452 (3)	-0.1874 (3)	0.06374 (12)	0.0569 (6)
H20	0.5363	-0.2054	0.0167	0.068*
C21	0.4150 (3)	-0.0829 (2)	0.08978 (11)	0.0462 (5)
H21	0.3190	-0.0314	0.0599	0.055*
C22	0.0873 (2)	0.1417 (2)	0.12703 (10)	0.0371 (4)
C23	-0.0135 (3)	0.0546 (2)	0.12557 (11)	0.0500 (5)
H23	0.0013	-0.0320	0.1622	0.060*
C24	-0.1362 (3)	0.0959 (3)	0.06987 (12)	0.0617 (6)
H24	-0.2015	0.0356	0.0689	0.074*
C25	-0.1617 (3)	0.2246 (3)	0.01642 (13)	0.0614 (6)
H25	-0.2463	0.2534	-0.0199	0.074*
C26	-0.0620 (3)	0.3109 (3)	0.01664 (13)	0.0671 (7)
H26	-0.0776	0.3974	-0.0201	0.081*
C27	0.0625 (3)	0.2694 (2)	0.07173 (12)	0.0552 (6)
H27	0.1299	0.3283	0.0713	0.066*
C28	0.3183 (3)	0.2461 (2)	0.19056 (10)	0.0397 (4)
C29	0.2019 (3)	0.3773 (2)	0.20503 (11)	0.0495 (5)
H29	0.0940	0.3794	0.2163	0.059*
C30	0.2460 (4)	0.5050 (3)	0.20269 (13)	0.0658 (7)
H30	0.1678	0.5915	0.2129	0.079*
C31	0.4042 (4)	0.5037 (3)	0.18538 (15)	0.0754 (8)
H31	0.4334	0.5891	0.1838	0.091*
C32	0.5193 (4)	0.3760 (3)	0.17038 (17)	0.0797 (8)
H32	0.6264	0.3754	0.1583	0.096*
C33	0.4770 (3)	0.2459 (3)	0.17305 (14)	0.0604 (6)
H33	0.5561	0.1597	0.1630	0.072*
N1	0.35406 (18)	0.07416 (16)	0.37739 (8)	0.0339 (3)
N2	0.02783 (17)	0.20492 (15)	0.34142 (8)	0.0314 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.02579 (7)	0.02575 (7)	0.02999 (7)	-0.00736 (5)	0.00105 (5)	-0.00686 (5)
C1	0.0333 (9)	0.0311 (9)	0.0374 (9)	-0.0099 (7)	-0.0007 (7)	-0.0092 (7)
C2	0.0411 (11)	0.0354 (10)	0.0634 (13)	-0.0091 (8)	0.0159 (9)	-0.0079 (9)
C3	0.0471 (11)	0.0447 (11)	0.0368 (9)	-0.0210 (9)	-0.0025 (8)	-0.0061 (8)
O1	0.0755 (11)	0.0585 (9)	0.0408 (8)	-0.0333 (8)	0.0109 (7)	-0.0066 (7)
O2	0.0744 (13)	0.0388 (10)	0.155 (2)	0.0073 (8)	0.0483 (13)	-0.0085 (11)
O3	0.0799 (13)	0.1001 (14)	0.0739 (12)	-0.0637 (12)	-0.0134 (10)	-0.0101 (10)

P1	0.0331 (2)	0.0361 (2)	0.0309 (2)	-0.01468 (18)	0.00072 (17)	-0.00656 (18)
C4	0.0322 (9)	0.0352 (9)	0.0498 (11)	-0.0053 (7)	0.0011 (8)	-0.0066 (8)
C5	0.0441 (12)	0.0420 (12)	0.0666 (14)	0.0031 (9)	0.0037 (10)	-0.0074 (10)
C6	0.0643 (15)	0.0306 (10)	0.0620 (14)	-0.0002 (9)	0.0122 (11)	-0.0099 (9)
C7	0.0686 (14)	0.0304 (9)	0.0411 (10)	-0.0174 (9)	0.0122 (10)	-0.0089 (8)
C8	0.0445 (10)	0.0279 (8)	0.0313 (8)	-0.0144 (7)	0.0065 (7)	-0.0061 (6)
C9	0.0437 (10)	0.0385 (9)	0.0299 (8)	-0.0218 (8)	0.0019 (7)	-0.0057 (7)
C10	0.0642 (14)	0.0552 (12)	0.0393 (10)	-0.0386 (11)	0.0007 (9)	-0.0088 (9)
C11	0.0700 (17)	0.0840 (18)	0.0513 (13)	-0.0525 (15)	-0.0044 (11)	-0.0127 (12)
C12	0.0388 (12)	0.0898 (18)	0.0516 (13)	-0.0317 (12)	-0.0075 (10)	-0.0062 (12)
C13	0.0334 (10)	0.0623 (13)	0.0408 (10)	-0.0166 (9)	-0.0018 (8)	-0.0073 (9)
C14	0.098 (2)	0.0388 (12)	0.0598 (14)	-0.0322 (12)	0.0120 (13)	-0.0201 (10)
C15	0.104 (2)	0.0557 (14)	0.0555 (14)	-0.0526 (15)	0.0049 (14)	-0.0204 (11)
C16	0.0338 (9)	0.0425 (10)	0.0366 (9)	-0.0184 (8)	0.0059 (7)	-0.0086 (7)
C17	0.0380 (11)	0.0622 (13)	0.0377 (10)	-0.0164 (9)	0.0031 (8)	-0.0127 (9)
C18	0.0363 (11)	0.0648 (14)	0.0537 (13)	-0.0115 (9)	0.0047 (9)	-0.0097 (10)
C19	0.0478 (13)	0.0612 (14)	0.0623 (14)	-0.0143 (10)	0.0175 (11)	-0.0229 (11)
C20	0.0595 (15)	0.0702 (15)	0.0460 (12)	-0.0197 (12)	0.0117 (10)	-0.0274 (11)
C21	0.0482 (12)	0.0553 (12)	0.0371 (10)	-0.0177 (10)	0.0018 (8)	-0.0131 (9)
C22	0.0352 (10)	0.0430 (10)	0.0331 (9)	-0.0142 (8)	-0.0003 (7)	-0.0059 (7)
C23	0.0584 (14)	0.0593 (13)	0.0389 (10)	-0.0318 (11)	-0.0049 (9)	-0.0031 (9)
C24	0.0593 (15)	0.0878 (18)	0.0500 (13)	-0.0416 (14)	-0.0090 (11)	-0.0102 (12)
C25	0.0494 (14)	0.0791 (17)	0.0519 (13)	-0.0184 (12)	-0.0175 (10)	-0.0069 (12)
C26	0.0755 (18)	0.0570 (14)	0.0594 (14)	-0.0207 (12)	-0.0278 (13)	0.0106 (11)
C27	0.0574 (14)	0.0531 (13)	0.0543 (13)	-0.0255 (10)	-0.0145 (11)	0.0049 (10)
C28	0.0496 (11)	0.0428 (10)	0.0330 (9)	-0.0250 (9)	0.0003 (8)	-0.0056 (7)
C29	0.0644 (14)	0.0451 (11)	0.0436 (11)	-0.0267 (10)	0.0081 (10)	-0.0066 (9)
C30	0.101 (2)	0.0432 (12)	0.0599 (14)	-0.0341 (13)	0.0065 (13)	-0.0087 (10)
C31	0.103 (2)	0.0654 (17)	0.0790 (18)	-0.0579 (17)	0.0007 (16)	-0.0122 (14)
C32	0.0749 (19)	0.088 (2)	0.099 (2)	-0.0591 (17)	0.0076 (16)	-0.0172 (17)
C33	0.0570 (15)	0.0611 (14)	0.0736 (16)	-0.0326 (12)	0.0038 (12)	-0.0159 (12)
N1	0.0314 (8)	0.0402 (8)	0.0312 (7)	-0.0145 (6)	0.0001 (6)	-0.0053 (6)
N2	0.0310(7)	0.0266 (7)	0.0340(7)	-0.0074(5)	0.0034 (6)	-0.0049(5)

Geometric parameters (Å, °)

Mo1—C2	1.933 (2)	С15—Н15	0.9300
Mo1—C3	1.9360 (18)	C16—C21	1.392 (2)
Mo1—C1	1.9604 (18)	C16—C17	1.401 (3)
Mo1—N2	2.2304 (14)	C17—C18	1.378 (3)
Mo1—N1	2.2589 (14)	С17—Н17	0.9300
Mo1—P1	2.5965 (5)	C18—C19	1.382 (3)
C1—O1	1.154 (2)	C18—H18	0.9300
C2—O2	1.163 (2)	C19—C20	1.380 (3)
C3—O3	1.175 (2)	С19—Н19	0.9300
P1-C16	1.8368 (19)	C20—C21	1.380 (3)
P1—C22	1.8449 (18)	С20—Н20	0.9300
P1-C28	1.8483 (17)	C21—H21	0.9300
C4—N2	1.332 (2)	C22—C27	1.382 (3)

C4—C5	1.393 (3)	C22—C23	1.389 (2)
C4—H4	0.9300	C23—C24	1.390 (3)
C5—C6	1.355 (3)	С23—Н23	0.9300
С5—Н5	0.9300	C24—C25	1.369 (3)
C6—C7	1.402 (3)	C24—H24	0.9300
С6—Н6	0.9300	C25—C26	1.372 (3)
С7—С8	1.411 (3)	C25—H25	0.9300
C7—C14	1.428 (3)	C26—C27	1.392 (3)
C8—N2	1.369 (2)	C26—H26	0.9300
C8—C9	1.426 (3)	C27—H27	0.9300
C9—N1	1.366 (2)	C28—C33	1.379 (3)
C9—C10	1.415 (2)	C28—C29	1.395 (3)
C10-C11	1.397 (3)	C29—C30	1.393 (3)
C10—C15	1.441 (3)	С29—Н29	0.9300
C11—C12	1.360 (3)	C30—C31	1.370 (4)
C11—H11	0.9300	С30—Н30	0.9300
C12—C13	1.407 (3)	C31—C32	1.372 (4)
C12—H12	0.9300	C31—H31	0.9300
C13—N1	1.333 (2)	C32—C33	1.405 (3)
С13—Н13	0.9300	С32—Н32	0.9300
C14—C15	1.339 (3)	С33—Н33	0.9300
C14—H14	0.9300		
C2—Mo1—C3	89.07 (9)	C21—C16—C17	117.52 (18)
C2—Mo1—C1	85.59 (8)	C21—C16—P1	123.70 (15)
C3—Mo1—C1	80.56 (7)	C17—C16—P1	118.73 (14)
C2—Mo1—N2	171.18 (7)	C18—C17—C16	121.27 (19)
C3—Mo1—N2	99.32 (7)	C18—C17—H17	119.4
C1—Mo1—N2	93.09 (6)	C16—C17—H17	119.4
C2—Mo1—N1	97.92 (7)	C17—C18—C19	120.1 (2)
C3—Mo1—N1	171.27 (7)	С17—С18—Н18	120.0
C1—Mo1—N1	94.70 (6)	C19—C18—H18	120.0
N2—Mo1—N1	73.48 (5)	C20—C19—C18	119.6 (2)
C2—Mo1—P1	93.28 (6)	С20—С19—Н19	120.2
C3—Mo1—P1	96.47 (6)	С18—С19—Н19	120.2
C1—Mo1—P1	176.82 (5)	C21—C20—C19	120.4 (2)
N2—Mo1—P1	88.48 (4)	C21—C20—H20	119.8
N1—Mo1—P1	88.40 (4)	С19—С20—Н20	119.8
O1—C1—Mo1	173.32 (15)	C20—C21—C16	121.15 (19)
O2—C2—Mo1	175.6 (2)	C20—C21—H21	119.4
O3—C3—Mo1	173.06 (17)	C16—C21—H21	119.4
C16—P1—C22	102.43 (8)	C27—C22—C23	118.30 (17)
C16—P1—C28	103.58 (9)	C27—C22—P1	122.83 (14)
C22—P1—C28	101.84 (8)	C23—C22—P1	118.82 (14)
C16—P1—Mo1	114.85 (6)	C22—C23—C24	120.53 (19)
C22—P1—Mo1	117.58 (6)	С22—С23—Н23	119.7
C28—P1—Mo1	114.60 (6)	С24—С23—Н23	119.7
N2	123.04 (18)	C25—C24—C23	120.5 (2)
N2—C4—H4	118.5	C25—C24—H24	119.8
С5—С4—Н4	118.5	C23—C24—H24	119.8

C6—C5—C4	119.8 (2)	C24—C25—C26	119.7 (2)
С6—С5—Н5	120.1	С24—С25—Н25	120.2
C4—C5—H5	120.1	С26—С25—Н25	120.2
C5—C6—C7	119.67 (19)	C25—C26—C27	120.2 (2)
С5—С6—Н6	120.2	С25—С26—Н26	119.9
С7—С6—Н6	120.2	С27—С26—Н26	119.9
C6—C7—C8	117.46 (18)	C22—C27—C26	120.8 (2)
C6—C7—C14	123.8 (2)	С22—С27—Н27	119.6
C8—C7—C14	118.7 (2)	С26—С27—Н27	119.6
N2—C8—C7	122.48 (18)	C33—C28—C29	118.79 (18)
N2—C8—C9	117.20 (15)	C33—C28—P1	123.17 (16)
С7—С8—С9	120.30 (16)	C29—C28—P1	117.98 (15)
N1—C9—C10	122.71 (18)	C30—C29—C28	120.6 (2)
N1—C9—C8	117.67 (14)	С30—С29—Н29	119.7
С10—С9—С8	119.62 (18)	С28—С29—Н29	119.7
C11—C10—C9	117.5 (2)	C31—C30—C29	120.2 (3)
C11—C10—C15	124.1 (2)	С31—С30—Н30	119.9
C9—C10—C15	118.3 (2)	С29—С30—Н30	119.9
C12-C11-C10	119.91 (19)	C30—C31—C32	119.8 (2)
C12—C11—H11	120.0	С30—С31—Н31	120.1
C10-C11-H11	120.0	С32—С31—Н31	120.1
C11—C12—C13	119.3 (2)	C31—C32—C33	120.7 (3)
C11—C12—H12	120.3	С31—С32—Н32	119.7
C13—C12—H12	120.3	С33—С32—Н32	119.7
N1-C13-C12	123.0 (2)	C28—C33—C32	120.0 (2)
N1—C13—H13	118.5	С28—С33—Н33	120.0
С12—С13—Н13	118.5	С32—С33—Н33	120.0
C15—C14—C7	121.3 (2)	C13—N1—C9	117.47 (16)
C15—C14—H14	119.4	C13—N1—Mo1	127.39 (13)
C7—C14—H14	119.4	C9—N1—Mo1	115.00 (11)
C14—C15—C10	121.7 (2)	C4—N2—C8	117.53 (15)
C14—C15—H15	119.2	C4—N2—Mo1	126.27 (12)
C10—C15—H15	119.2	C8—N2—Mo1	116.14 (11)
C2—Mo1—P1—C16	-3.87 (9)	C16—P1—C22—C23	84.52 (18)
C3—Mo1—P1—C16	-93.31 (9)	C28—P1—C22—C23	-168.51 (17)
N2—Mo1—P1—C16	167.49 (7)	Mo1—P1—C22—C23	-42.39 (19)
N1—Mo1—P1—C16	93.97 (7)	C27—C22—C23—C24	-0.2 (3)
C2—Mo1—P1—C22	116.76 (10)	P1-C22-C23-C24	-177.66 (18)
C3—Mo1—P1—C22	27.33 (9)	C22—C23—C24—C25	-1.3 (4)
N2—Mo1—P1—C22	-71.88 (8)	C23—C24—C25—C26	2.0 (4)
N1—Mo1—P1—C22	-145.40 (8)	C24—C25—C26—C27	-1.2 (4)
C2—Mo1—P1—C28	-123.64 (10)	C23—C22—C27—C26	1.0 (4)
C3—Mo1—P1—C28	146.92 (9)	P1-C22-C27-C26	178.3 (2)
N2—Mo1—P1—C28	47.71 (8)	C25—C26—C27—C22	-0.3 (4)
N1—Mo1—P1—C28	-25.80 (8)	C16—P1—C28—C33	-13.0 (2)
N2-C4-C5-C6	-0.7 (3)	C22—P1—C28—C33	-119.11 (18)
C4—C5—C6—C7	0.8 (3)	Mo1—P1—C28—C33	112.84 (17)
C5—C6—C7—C8	-0.1 (3)	C16—P1—C28—C29	169.78 (15)
C5—C6—C7—C14	179.7 (2)	C22—P1—C28—C29	63.70 (16)

C6—C7—C8—N2	-0.8 (3)	Mo1-P1-C28-C29		-64.35 (16)
C14—C7—C8—N2	179.33 (17)	C33—C28—C29—C30		-0.8 (3)
C6—C7—C8—C9	177.72 (17)	P1-C28-C29-C30		176.55 (17)
C14—C7—C8—C9	-2.1 (3)	C28—C29—C30—C31		0.7 (3)
N2-C8-C9-N1	0.4 (2)	C29—C30—C31—C32		-0.1 (4)
C7—C8—C9—N1	-178.20 (15)	C30—C31—C32—C33		-0.4 (4)
N2-C8-C9-C10	179.80 (15)	C29—C28—C33—C32		0.3 (3)
C7—C8—C9—C10	1.2 (2)	P1-C28-C33-C32		-176.86 (19)
N1-C9-C10-C11	0.8 (3)	C31—C32—C33—C28		0.3 (4)
C8—C9—C10—C11	-178.51 (17)	C12-C13-N1-C9		0.3 (3)
N1-C9-C10-C15	-179.60 (17)	C12-C13-N1-Mo1		-175.18 (14)
C8—C9—C10—C15	1.1 (3)	C10-C9-N1-C13		-1.0 (2)
C9—C10—C11—C12	0.1 (3)	C8-C9-N1-C13		178.33 (15)
C15-C10-C11-C12	-179.4 (2)	C10-C9-N1-Mo1		175.01 (13)
C10-C11-C12-C13	-0.8 (3)	C8-C9-N1-Mo1		-5.63 (19)
C11—C12—C13—N1	0.6 (3)	C2-Mo1-N1-C13		3.59 (16)
C6—C7—C14—C15	-179.0 (2)	C1-Mo1-N1-C13		89.77 (15)
C8—C7—C14—C15	0.8 (3)	N2—Mo1—N1—C13		-178.39 (16)
C7-C14-C15-C10	1.5 (4)	P1—Mo1—N1—C13		-89.50 (14)
C11—C10—C15—C14	177.1 (2)	C2-Mo1-N1-C9		-171.98 (12)
C9-C10-C15-C14	-2.4 (3)	C1—Mo1—N1—C9		-85.79 (12)
C22—P1—C16—C21	1.63 (18)	N2—Mo1—N1—C9		6.04 (11)
C28—P1—C16—C21	-104.00 (16)	P1—Mo1—N1—C9		94.93 (11)
Mo1-P1-C16-C21	130.28 (15)	C5—C4—N2—C8		-0.3 (3)
C22—P1—C16—C17	-175.63 (14)	C5-C4-N2-Mo1		176.72 (15)
C28—P1—C16—C17	78.74 (16)	C7-C8-N2-C4		1.0 (2)
Mo1-P1-C16-C17	-46.98 (16)	C9—C8—N2—C4		-177.56 (15)
C21—C16—C17—C18	0.7 (3)	C7-C8-N2-Mo1		-176.28 (13)
P1-C16-C17-C18	178.11 (16)	C9-C8-N2-Mo1		5.13 (18)
C16—C17—C18—C19	-1.6 (3)	C3—Mo1—N2—C4		-8.00 (15)
C17—C18—C19—C20	1.8 (4)	C1—Mo1—N2—C4		-88.93 (15)
C18—C19—C20—C21	-1.1 (4)	N1—Mo1—N2—C4		177.08 (15)
C19—C20—C21—C16	0.2 (3)	P1-Mo1-N2-C4		88.30 (14)
C17—C16—C21—C20	0.1 (3)	C3—Mo1—N2—C8		169.03 (12)
P1-C16-C21-C20	-177.23 (17)	C1—Mo1—N2—C8		88.10 (12)
C16—P1—C22—C27	-92.80 (19)	N1—Mo1—N2—C8		-5.88 (11)
C28—P1—C22—C27	14.2 (2)	P1—Mo1—N2—C8		-94.66 (11)
Mo1—P1—C22—C27	140.29 (17)			
<i>Hydrogen-bond geometry</i> $(Å, °)$				
D—H…A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C5—H5···O2 ⁱ	0.93	2.34	3.058 (3)	134

Symmetry codes: (i) x-1, y+1, z.

